Product assessment

Study Overview

Many products are marketed to increase yields and nitrogen use efficiency by providing additional nitrogen, increasing plant uptake, or stabilizing applied nitrogen. As new products continue to enter the market, staying ahead with unbiased, regionally relevant research is crucial to assess product effectiveness and understand their place in Wisconsin cropping systems. The goal of this study is to assess the effect of a product across a standard and reduced commercial nitrogen rate, and the interaction of the two on yield, marginal net return, nitrogen use efficiency, and potentially leachable nitrogen. Investigating a product across a standard and reduced nitrogen rate will allow us to better understand its impact on both yield and nitrogen need of the crop. Since the trial only uses two nitrogen rates, it is not designed to determine the optimum nitrogen rate for this system. If that is the goal of a trial, a full nitrogen rate study with 6 or more N rates is recommended (NOPP Option 1).

As you develop specific project details including your research question, treatments, and trial layout, we recommend that you connect with the UW team to develop a project that best meets your interests and goals. If you're applying for a NOPP grant, specific project details can be discussed with UW NOPP Research Director Monica Schauer (monica.schauer@wisc.edu). If interested in implementing this research protocol independently on your own farm, reach out to UW-Extension On-Farm Research Coordinator Abby Augarten (aaugarten@wisc.edu).

Selecting product treatments

This protocol allows you to investigate a product most relevant to your goals for improving nitrogen management. Common products to investigate may include nitrogen inhibitors or stabilizers, biological products (such as beneficial microbes, plant growth regulators, biostimulants, etc.), or other products of interest. The product chosen must be applied at a rate and timing in accordance with the label and will be compared to the control where no product is applied.

Projects derived from this protocol are designed to answer producer driven questions regarding the effectiveness of products on the current market. The project requirements described in this protocol align with the research requirements of the DATCP's Nitrogen **Optimization Pilot Program** (NOPP) grant Option 3 but can be used independently on your own farm to investigate product effectiveness. Current funding opportunities for NOPP can be found here.

This protocol was developed by the UW-Madison Department of Soil and Environmental Science and Division of Extension.

Selecting nitrogen rate treatments

Identifying a standard commercial nitrogen rate should be based on the rate you would normally apply without the product. Based on project goals, the reduced N rate can be 20-40% less N than your standard rate. Chosen rates are going to vary based on specific project details so please reach out to the UW team to fine tune rates used to match your project goals.

Project design

Given that nitrogen dynamics are variable within a given field, a well-structured project design provides confidence in the results of the project. Replication, or repeating each treatment multiple times in the field, and randomization, or assigning treatments to plots with no particular order, make it possible to account for the natural field variation that occurs. Using a well-structured design and statistical analysis, we can determine if any differences in yield effects were due to the treatments, or random chance and variability. For this study, a minimum of four replications is required. Complete randomization of plots is recommended but not required, since it can be difficult due to limitations in field equipment, but trials can be designed to work around these limitations. See example plot layouts at the end of this protocol.

- Field selection: Select a field that is uniform, relevant to the research question, and accessible for ease of data collection (or outreach). Avoid headlands and any known areas with in-field variability when laying out plots.
- Strip width: Determined based on equipment width. It is important to consider how the product is being applied and the size and capability of relevant equipment, nitrogen application equipment, and harvester. Strip width should be at least the width of the harvester (preferably two or more combine header widths).
- Strip length: Recommended that strips are the length of the field for ease of implementation. Strips can be shorter if desired but should be >350 ft if using a yield monitor and >150 ft if using a weigh wagon.
- Field management: All other in-season field management outside of product and nitrogen application (i.e. herbicide, other fertilizer, tillage) should occur uniformly across the field and trial area.

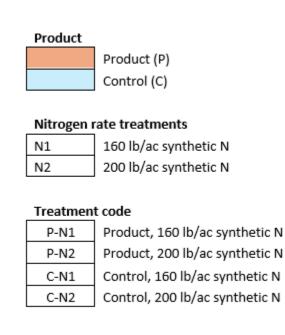
Data collection

Required data and sampling

- Field history & management records (survey to collect this information will be provided)
- Manure sample from time of application if field has uniform manure application
- Routine soil (pH, OM, P, K, etc.) sampled across trial area as one composite sample prior to any product or nitrogen application.
- Cover crop sample if field has cover (see UW sampling resources linked in the NOPP protocol library).
 Sample at time of termination.
- Soil nitrate and ammonium sampled prior to nitrogen applications at 0-1' & 1-2'. For example, if all synthetic N is going out pre-plant, sample by each replicate before planting.
- Yield data from calibrated yield monitor or weigh wagon.

Additional sampling is encouraged as your budget allows. Examples include:

- In-season soil nitrate and ammonium (0-1' & 1-2')
- Post-harvest soil nitrate and ammonium (0-1' & 1-2')
- Soil health analysis
- Plant tissue nutrient analysis
- Forage quality analysis
- Corn ear leaf
- Stalk nitrate
- Grain %N


If you're applying for a NOPP grant, specific project details can be discussed with UW Research Director Monica Schauer (monica.schauer@wisc.edu). If interested in implementing this research protocol independently on your own farm, reach out to UW Extension On-Farm Research Coordinator Abby Augarten (augarten@wisc.edu).

Plot plan examples

Plot plan A

Complete randomization and replication of product application and N rates. This is the preferred plot plan if achievable by equipment and field size.

Plot ID 101 160 lb-N/ac 102 200 lb-N/ac Rep 1 103 160 lb-N/ac 104 200 lb-N/ac 201 160 lb-N/ac 202 160 lb-N/ac Rep 2 203 200 lb-N/ac 204 200 lb-N/ac 301 200 lb-N/ac 302 160 lb-N/ac Rep 3 200 lb-N/ac 303 304 160 lb-N/ac 160 lb-N/ac 401 402 160 lb-N/ac Rep 4 200 lb-N/ac 403 200 lb-N/ac 404

Plot plan B

Full replication of product application and N rates with product applications partially grouped. This plot plan aligns with a split-planter set up if product is a seed coating or is applied with planter.

Plot ID

101	160 lb-N/ac	
102	200 lb-N/ac	Pop 1
103	160 lb-N/ac	Rep 1
104	200 lb-N/ac	
201	160 lb-N/ac	
202	160 lb-N/ac	Pon 2
203	200 lb-N/ac	Rep 2
204	200 lb-N/ac	
301	200 lb-N/ac	
302	160 lb-N/ac	Don 2
303	200 lb-N/ac	Rep 3
304	160 lb-N/ac	
401	160 lb-N/ac	
402	160 lb-N/ac	Don 4
403	200 lb-N/ac	Rep 4
404	100 lb-N/ac	

Product

Nitrogen rate treatments

N1	160 lb/ac synthetic N
N2	200 lb/ac synthetic N

Treatment code

P-N1	Product, 160 lb/ac synthetic N
P-N2	Product, 200 lb/ac synthetic N
C-N1	Control, 160 lb/ac synthetic N
C-N2	Control, 200 lb/ac synthetic N

Plot plan C

Complete replication of product application and N rates with product grouped and not fully randomized. This allows for a wider product application pass.

Plot ID

101	160 lb-N/ac	
102	200 lb-N/ac	Don 1
103	160 lb-N/ac	Rep 1
104	200 lb-N/ac	
201	200 lb-N/ac	
202	160 lb-N/ac	Don 3
203	160 lb-N/ac	Rep 2
204	200 lb-N/ac	
301	200 lb-N/ac	
302	160 lb-N/ac	Don 3
303	200 lb-N/ac	Rep 3
304	160 lb-N/ac	
401	160 lb-N/ac	
402	200 lb-N/ac	Don 4
403	200 lb-N/ac	Rep 4
404	160 lb-N/ac	

Product

Product (P) Control (C)

Nitrogen rate treatments

N1	160 lb/ac synthetic N
N2	200 lb/ac synthetic N

Treatment code

P-N1	Product, 160 lb/ac synthetic N
P-N2	Product, 200 lb/ac synthetic N
C-N1	Control, 160 lb/ac synthetic N
C-N2	Control, 200 lb/ac synthetic N

Plot plan D

Complete replication of product and N rates with product grouped and not fully randomized. This allows for a wider product application pass.

Plot ID

101	160 lb-N/ac	
102	200 lb-N/ac	Don 1
103	160 lb-N/ac	Rep 1
104	200 lb-N/ac	
201	200 lb-N/ac	
202	160 lb-N/ac	Don 2
203	160 lb-N/ac	Rep 2
204	200 lb-N/ac	
301	200 lb-N/ac	
302	160 lb-N/ac	Don 2
303	200 lb-N/ac	Rep 3
304	160 lb-N/ac	
401	160 lb-N/ac	
402	200 lb-N/ac	Don 4
403	200 lb-N/ac	Rep 4
404	160 lb-N/ac	

Product

Product (P) Control (C)

Nitrogen rate treatments

N1	160 lb/ac synthetic N
N2	200 lb/ac synthetic N

Treatment code

P-N1	Product, 160 lb/ac synthetic N
P-N2	Product, 200 lb/ac synthetic N
C-N1	Control, 160 lb/ac synthetic N
C-N2	Control, 200 lb/ac synthetic N

