

Closing the Knowledge Gap on Wisconsin Hop Fertility

Christopher A. Baxter, Ph.D.

Professor & Soil Fertility and Nutrient Management Specialist UW-Platteville and University of Wisconsin Madison-Extension

Summary of Recent Hop Fertility Work in Wisconsin

2016 – Collected preliminary data on yield, nutrient removal and soil test levels.

Verified P and K removal were within UW estimates

Indicated need for further evaluation of recommended N rates

2017&2018 – Conducted study to evaluate effect of nitrogen rate and timing on hop biomass and cone yield. Incorporated petiole nitrate tissue and sap testing.

https://buffalo.extension.wisc.edu/agriculture/barley-and-hops/

2019 – Initiated a 2-year study to determine optimum N rates for Wisconsin growers.

- Included 5 N rates
- Continued petiole tissue and sap testing
- Included post harvest soil nitrate sampling
- Evaluate effect of N rate on hop quality parameters

2019 N Rate Trials

Same locations as used in 2017 and 2018

- Tomah, WI : Centennial and Cascade
- Waterloo, WI: Chinook, Tahoma
- Rosholt, WI: Magnum, Nuggett

Nitrogen Treatments

- Plots consisted of 5 "plants"
- N rates: 0, 50, 100, 150, 200 lbs N/ac
- All N rates split applied: at training and after majority of bines reached top wire.
- N source: ammonium nitrate
- Used maintenance rates of P, K, Zn, and B

Data Collection

- Soil samples collected and plots harvested at discretion of the grower (July-Sept).
- Whole plants weighed before machine picking. Subsamples of machine-picked cones and bines collected for determination of moisture and nutrient content.
- Soil samples collected from a subset of plots to investigate for determination of profile nitrate.

2019 Biomass and Cone Yield Results

Variety significantly affected bine and cone yield

Christopher A Baxter

Hop Production for the Wisconsin Craft Brew Industry, February 29, 2020

Significance of N rate effect on Bine and Cone Yield

Location	Variety	N treatment effect on Bine DM yield P-value	N treatment effect on Cone yield P-value	
Tomah	Cascades	0.001	0.099	
Tomah	Centennial	0.012	0.023	
Rosholt	Magnum	0.015	0.077	
Rosholt	Nugget	<0.001	0.004	
Waterloo	Chinook	0.014	0.37	
Waterloo	Tahoma	0.772	0.633	

P values less than 0.05 generally indicate significant effect of N treatment.

Overall Effect of N rate on Average Bine and Cone Yield

N Rate (Ib N/ac)	Bine DM (lb/ac)	Cone Yield (adj. 10% moisture, lb/ac)
0	2735 C	841 C
50	3480 B	944 CB
100	4191 A	1141 BA
150	4430 A	1226 A
200	4501 A	1188 A

Means that do not share a letter are significantly different.

Biomass and Cone Yield affect on N Removal

Cone yield was not a good predictor of N removal

N removal is well correlated with biomass yield

Petiole Tissue and Sap testing

- Potentially a valuable tool for hop growers
- Samples collected when bines are ½ ¾ to top of trellis
- Allows for in-season adjustment of N rates
- Recommend applying 50-70% of N recommendation prior to petiole test
- General Guidelines (adapted from PNW recommendations)
 - O-6000 ppm : Apply recommended rate plus additional 30-50lbs N
 - 6000-10000 ppm: Apply recommended N rate
 - 10000+ ppm: no additional N necessary

Christopher A Baxter

Tissue Vs. Sap - All 2019 Samples

Effect on Hop Quality Parameters

- 3 varieties sampled for hop quality parameters, analyzed by AAR Labs
- Variety significantly affected HSI, total Oils, Total A-acid, Cohumulone, Total B-acid, Colupulone, and A/B ratio. (P<0.0001)
- N rate did not have a effect on any quality parameter except Colupulone. (P=0.02).
- Colupulone (as % of BA) decreased steadily with N rate in the Chinooks, but this decrease was not observed in Cascade or Magnum varieties.

Variety	HSI	Oils (mg/100g)	Cohumulone (% of AA)	A-Acid (%)	Colupulone (% of BA)	B-acid (%)	A/B
Cascade	0.24	0.19	32.45	1.41	54.14	0.98	1.55
Chinook	0.26	0.62	30.55	2.83	55.27	0.73	3.87
Magnum	0.27	0.86	25.92	4.57	45.97	2.12	2.15

Effect of N rate on Colupulone (as % of BA) in Chinook

Hop Production for the Wisconsin Craft Brew Industry, February 29, 2020

N treatment effect on Soil test

- N treatment had no significant effect on soil test P or organic matter, but significantly (P<0.001) affected pH and soil test potassium</p>
- On average pH dropped 0.5 units and K dropped 45 ppm in 200lb/ac N rate plots compared to the 0 N plots.

Hop Production for the Wisconsin Craft Brew Industry, February 29, 2020

Deep Soil Nitrate sampling

- Collected from three varieties; Cascades (Tomah), Chinook (Waterloo), and Nugget (Rosholt).
- Used truck-mounted probe to collect samples to a depth of 7-8 ft (or refusal)
- Collected samples in row, ¼ distance between row, and ½ distance between row.
- Sampled 0, 100, and 200 lb N/acre plots.

Rosholt-Nugget

Hop Production for the Wisconsin Craft Brew Industry, February 29, 2020

Waterloo-Chinook

PLATTEVILLE

Hop Production for the Wisconsin Craft Brew Industry, February 29, 2020

Tomah-Cascade

SUMMARY

- 2019 growing season data suggest, on average, N rate above 150 lb/ac did not increase cone yield.
- Cone yield doesn't appear to be a good predictor of optimum N rate.
- Fine-tuning N rate for hop will likely involve variety-specific adjustments for biomass production.
- Petiole testing has promise for in-season adjustments of N rate proper sampling time is important.
- Most quality parameters don't seem to be affected by N rate, but data suggest that N fertility decreases colupulone in at least one variety
- Managing lime and K inputs are important considerations for hop growers
- End-of season soil nitrate-N concentrations were generally low, and didn't appear to reflect N rate.

Acknowledgements

- Hannah McWhirter UW Platteville, Class of 2019.
- Fine Bine Farms Randy and Peggy Urness
- Bohica Hop Farm Bob, Jim, & Sherry Conant
- Davali Ridge Hops Dave and Ali Buss
- Carl Duley UWEX, Buffalo County
- Jerry Clark UWEX, Chippewa County
- Bill Halfman UWEX, Monroe County
- Ken Schroeder UWEX, Portage County
- George Koepp UWEX Columbia County
- NRCS Soil Scientists Chris Miller, Karla Petges, Natalie Irizarry
- 8 Hop harvest helpers: Walt Rasmussen, Ashley Olson, Ashley Blackburn, Kaitlyn Lance

